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I. INTRODUCTION

In the past few years, improvements in the growth of epitaxial and

bulk crystal forms of III-V compound semiconductor materials have led to

many new devices. These devices include Gunn oscillators, light emitting

diodes, infrared detectors, lasers, and special purpose transistors. The

performance and lifetime of such devices depends sensitively on defects in the

material. For example, the intensity of light emitting diodes is known to be

strongly affected by dislocations that can be initiated by point defects.

Most impurities in III-V compounds can be detected in very low con-

centrations by chemical means. Vacancies, however, are difficult to detect.

For this reason unexplained phenomena observed in these materials are often

blamed on vacancies. It has been claimed that vacancies act as traps, recom-

bination centers, and scattering centers. Since no method has existed to

directly detect the vacancies, it has been difficult to confirm such assertions.

Once low concentrations of vacancies can be detected, then their supposed

effects can be confirmed; and, what is more important, crystal growth methods

can be improved to eliminate them.

The purpose of this work has been to develop experimental methods

and related theory which will permit the measurement of low concentrations of

vacancies and other defects in III-V compound semiconductors. Once the nature

of these defects has been determined, this information can be incorporated into

a transport theory for devices constructed from these materials, and experiments
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conducted to test the theory.

The vacancies and other defects in theIII-V compounds are detected

by measurement of the nuclear magnetic resonance (NMR) line width. Most of

theIII-V compounds have at least one isotope with a nuclear quadrupole moment.

In a crystal with a cubic crystal field (characteristic of most III-V compounds)

there is no quadrupole splitting of the Zeeman resonance line. However, a defect

removes the cubic symmetry locally and causes splittings which result in a change

of the NMR line width. This change can be used to detect the presence of vacancies

14 3 1
in concentrations as low as 1 0  /cm .

This report describes the progress to date on the project, as supported

by this research grant. Further reports will be made in the form of publications

that are now being prepared for submission to scientific journals. Copies of

these will be forwarded to NASA as they are completed. One of these reports has

been submitted to the Review of Scientific Instruments for publication, and is

included as Appendix A to this report.



II. THEORETICAL ANALYSIS OF NUCLEAR RESONANCE LINE SHAPES

The objective of this section is to compute the nuclear magnetic resonance

(NMR) line broadening for the spins in a III-V compound semiconductor, in the

large magnetic field limit. The spins interact normally via dipole-dipole

and exchange interactions. In addition, charged point defects, such as vacan-

cies or ionized donors and acceptors, break the cubic crystal symmetry and

create a distribution of electric field gradients - and so quadrupole shifts -

in their neighborhood. The electric field due to these charged defects shifts

the ions around them from their equilibrium lattice sites into regions with

finite electric field gradients. Such off-lattice site field gradients are

large compared to those arising directly from the point charges. Since the

electric field decreases only as the square of the distance r from each de-

fect, each defect influences many ions.

For low concentrations of defects where most ions experience small fields,

-2
the quadrupole shifts broaden the Zeeman lines. If the fields decrease as r-2

the line shapes are Gaussian; if the fields arise from something like a dipolar

-3
charge distribution and fall off as fast as r the line shapes are Lorentzian.

However, when the concentrations are higher, the shifts become large enough

so that only the transitions between the levels identified by z-components

of spin +1/2 and -1/2 remain in the original Zeeman line, and the intensity is

3



reduced. The width of this remaining line decreases because with these large

quadrupole splittings some parts of the dipole-dipole and exchange interactions

become non-secular. An experimental study of these effects will provide infor-

mation about defect concentrations, and possibly the charge distributions about

defects.

Spin Hamiltonian

The Hamiltonian for the system is:

The Zeeman Hamiltonian is:

*v. 
(2)

where nucleus j has gyromagnetic ratio 6 and spin I_

For like spins, and when A =0, the secular part of the dipole-

dipole plus pseudo dipole-dipole Hamiltonian is:

Where the pseudo dipolar coupling constant B, arises from indirect interactions

between thel and 'nuclei coupled by p and d electrons. For unlike spins, a part

of 1., does not contribute to the secular Hamiltonian. The changes when

G4 #0 will be discussed in detail later.

The exchange Hamiltonian is:

A 21 1 (4)

where A f, is the exchange coupling constant that arises from interactions

among the nuclei and s electrons.2 Ais independent of the direction of the

magnetic field, and thus produces isotropic changes in the line shape.
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The secular part of the quadrupole Hamiltonian is:

WT.j (21I (5)

where Q is the quadrupole moment of nucleus e., and the field gradi.ent tensor

is produced by the electric field E at site ,

E'

ec 1j k (6)

The indices i,j,k = x,y,z run over the principal cubic axes of the crystal.

The piezoelectric strain terms and the direct field gradient terms have been

dropped from e lj because they are small compared to the field generated

terms. The III-V compounds all have a Td symmetry for which

e =-R E 0 E;

E(7)

where R is the value of the only non-vanishing elements of the R tensor

at site t, RI R = R R . In the III-V compounds, R takes on
xyz yzx zxy

only two values, one for III-atom sites, and the other for V-atom sites.

Finally, from Eq. (6) we find:

n• . .-2R nx n (8)n,

Since most of the nuclei affected by an impurity lie outside the first

few near neighbor shells, a reasonably accurate approximation for the electric

field at displacement r from an impurity is:

E 3= 
()r (9)
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where e* is the effective charge of the impurity and e is the low frequency

dielectric constant. Justification for such a simple form for the electric

field in an insulator is given by Kubo.3 If, as we hope, experiments can be

devised that provide detailed information about the charge distribution near

an impurity, then a more accurate dielectric response formulation will be

needed. However, useful insights can be gained from an analysis of this

simple model.

Since the. initial experiments have been conducted on GaAs, the remainder

of this discussion will be specialized to the spin 3/2 case (the spin of

Ga 69  Ga71 , and As75). The experimentally determined values of

Ga 10 -1 As 10 -1
R = 0.98 x 10 cm and R = 1.55 x 10 cm will be used. The natural

abundances, gyromagnetic ratios, and quadrupole moments for the nuclei in GaAs

are given in Table I.

Natural Gyromagnetic Quadrupole
Nucleus Abundance Ratio Mome t

(per cent) (kHz per gauss) (cm )

Ga69 60.2 1.0219 .178 x 10-24

Ga71  39.8 1.2984 .112 x 10-24

As75  100 0.7292 .3 x 10

Table I.

Calculation of the Number of Spins Influenced by a Defect

Let us concentrate on one of the isotopes with Larmor frequency denoted

by V = yH. The magnitude of the shift of the Larmor frequency Av of the



m A I transitions from the states 3/2 to 1/2 and -3/2 to -1/2 of an ion

+

at displacement r relative to an impurity is

eQ ) r(

S , ,3 --o'*
LUI (z-1) h r3  (10)

where

oL E he (nn1  "r Y13  + n(1x)

In order to compare our experiments with Rhoderick's
5 experiments on the

variation of NMR intensity with ionized impurity concentrations, or to compute

the change of the line shape, the number of ions near an impurity whose quad-

rupole frequency shift IAvl is greater than some prescribed minimum AVmin

must be found. To accomplish this we shall first calculate the volume near

a given impurity where IAVI>AVmin . In order to take account of finite size

-2
effects and avoid infinities that arise from the fact that r

- 2 falls off

slowly, we shall actually compute the volume 0 of the sample for which

IAl>Av min, and also r<ro, where ro will be a characteristic dimension of the

sample. There will be two cases to treat. In the first instance Av is

small enough so the volume 0 is limited by ro, and in the second case Av is

sufficiently large so the volume S lies completely within the sample.

This model for the finite size is a bit too simple, since it is correct

only for an impurity located at the center of a spherical sample. A more

accurate model would round off some of the abrupt changes this simple model

introduces. We will find, however, that no observable physical phenomena

are sensitive to this choice, so it is useless to deal with the complexities
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of a more realistic model. The only purpose served by the finite size is

to provide a cutoff to eliminate an unphysical infinity.

Another restriction must be placed on the lower limit of r, a<r, to

account for the fact that the host atoms are separated from the impurity by

at least a distance a. For example, if the resonant nucleus is a type III

nucleus, and the vacancy or impurity is at a type V site, then a is the near

neighbor distance a o. If the defect sits on a type III site, then a is larger

(a = (8/3)1/2 .a0). If the defect is in an interstitial site, then a will

be less than ao.

From Eq. (10), the condition that AV be constant is satisfied for

(12)

where 0 is the angle between r and a. The broadening of the magnetic resonance

lines and the decrease in intensity depends only on the magnitude of Av;

positive and negative values contribute equally. Thus the shape of the volume

with IAVI>AVmin and a<r<ro is a figure of revolution about the direction a,

of the shaded area shown in Figure 1.

Fgi. I
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For this case, the volume 0 is given by the integral

cos5-'( 7. /o) T/o ~ / Jcos /

r)=  siOGe 6 {r2dr + 41TJ Sinedg r 2 cr -

0 cosI r t V'LOto

- sini dr - L4 sInTd r dr

0 o- (cvo) 0 (13)

3 . r 3 5-Of-
Next suppose that Av is large enough so that the volume lies within

the sample. Then the volume over which the integral must be taken is a

figure of revolution of the solid curve, for r>a, in Figure 1. Then the

'n r / 3 a

= - \ ,n ) - -- @3a A (lh)

If p is the density of nuclei of interest, e.g. Ga6 , then the number

Ns(Av) with frequency shift greater than Av is

N(~ C))= = ()

S 3 3

' (15)

where

C\) rd - eQRI

/a 69 (16)
and N is the number of relevant ions (Ga ) in the sample.
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Calculation of the Line Shape Due to the Defect-Induced Quadrupole Interaction

The distribution g(Av) of frequency shifts between Av and AV + d(Av)

caused by a single impurity is related to N (AV) by the expression

glV)) dN 5 (,6V)
d 69 ) ) 6 = e v. 

(17)

4 ()0 ( /,~) L) > S

Thus g(Av) is constant until AV reaches Av 0, then decreases as (AV) - 5/2

until Av reaches its maximum value (ro2/a2 )Ao = (a/a 2), where g(Av) goes

to zero.

Next we must find the line shape and width to associate with a number

of impurities distributed at random throughout the sample. For a broadening

mechanism caused by dilute impurities, it is well known6 that if the interaction

between the impurity and the major constituent nuclei falls off faster than

-2
r then the line shape is Lorentzian. However, if the interaction falls

-2
off as r-2 or slower, then the conditions for the "Central Limits Theorem"

are satisfied and the line shape is Gaussian. Since. the model we are investi-

-2
gating has the fields decreasing as r , we shall use the results of the

Central Limits Theorem.

2
The second moment of the Gaussian AV , according to the Central Limits

Theorem, equals the second moment A~ of the one impurity distribution times

the number of impurities N I 6, a

S(28)

I 3 a  ( (n)

~c 3~ j, hL Er C +~ ~ ( n,% + t,%



where p is the density of defects.7 As we stated earlier, Av does not

depend on the size of the sample, ro.

Finally, the relation between the distribution of quadrupole frequency

shifts G (AV) (basically an inhomogeneous broadening), and the NMR line shape

G(v) must be established. The quadrupole frequency shift distribution is a

Gaussian function with variance Av2

pj (19)

For the spin 3/2 case, the magnetic resonance line shape is found through

the expression

G(v =v G. (-~v )+ '64G1 ( 3G
-0o (20)

where G , (V -Av, Av) is the line shape function of the 3/2+1/2 transi-

tion caused by other broadening mechanisms (as modified by the quadrupole

shifts). The first argument in the functional dependence of G,/ 3 is the

center frequency, and the second is intended to represent the effect the shift

may cause on the line shape. The shape due to other interactions can be modi-

fied by the shifts, e.g. terms in the dipolar Hamiltonian that are secular in

the abscence of shifts will become non-secular when the shifts are large

enough, thus modifying the width of the dipolar broadened line. G _, /" and

G _SV are the corresponding shape functions for those transitions. The

factors 0.3, 0.4, 0.3 multiplying the shape functions are weighting factors

which arise from the transition matrix elements for the three transitions.

We shall have to treat the more complex case later, but for now examine

the simple situation corresponding to low defect concentrations.
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L)Z3

2.(

2) 1) (21)

_1 3 ) ( )) C - .

Then Eq. (20), in view of the approximation in Eq. (21), becomes

00

C) = o./() 4j.&GN (22)

-00

If G (v) is a Gaussian with variance aO then

0. 6 ?I)C C o (23)

where v is centered at the Larmor frequency. Thus the variance a of thec

composite line is

0 (24)

The contribution from the quadrupole interaction can also be found

from a standard Van Vleck calculation that yields an answer involving a lattice

2
sum. If one uses the electric field-induced gradients, as given in Eq. (16),

the angular dependence of a is reproduced exactly. If, in addition, the radial
c

lattice sum is replaced with an integral, the same numerical result, Eq. (24), is

obtained.



III. EXPERIMENTAL EQUIPMENT

1. Pulsed NMR

The descriptions of equipment in this section may be clarified by

reference to Figure 2, a block diagram of the pulsed NMR system. Much

of this system was purchased with funds provided by a National Science

Foundation Departmental Development Grant. However, graduate student support

and faculty summer salaries provided by this grant were indispensable to the

construction of the system.

a. Pulse programmer

A programmable pulse generator was designed and built in this

laboratory to control the sequences of pulses of radio frequency (rf) magnetic

field that are applied to the sample. A number of pulses and delays can be

called for serially in time. Each pulse can have one of four different rf phases

in the gating and phasing circuits. The rf can be supplied either as normal

high intensity pulses, or as low and variable intensity pulses for "rotating frame"

experiments. Both the pulse duration and the delay time can be controlled either

digitally or by analog circuits.

Although the pulse programmer is limited to 16 separate instructions,

two capabilities extend its effective memory. Many pulse sequences are repeti-

tions of a basic short sequence. The programmer has two separate counters that

permit "looping" of a particular sequence a number of times. In addition, the

13
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pulse programmer memory can be loaded by the minicomputer that controls the signal

averaging process. Thus the programer memory is effectively extended to the

memory available in the .minicomputer, if there is enough time (approximately

50 microseconds) in a given sequence to reload between pulses.

A more complete description of the programmer is being prepared for

publication (see Appendix B).

b. RF Phasing and Gating

This portion of the pulsed NMR system provides pulses of rf in

the sequence specified by the pulse programmer. The rf source is a General Radio

frequency synthesizer with excellent frequency, amplitude, and phase stability.

The pulses may have any one of four phases with respect to the master oscillator:

00, 900, 1800, 2700.

Actual pulse gating and amplification are done at a fixed frequency,

and the result is mixed with a variable frequency to provide the NMR stimulating

pulse. This procedure eliminates much of the tuning usually required to change

NMR frequencies.

c. Power Amplifier and Sample Probe

A combination of commercial power amplifiers and circuits made in

this laboratory is used to apply the rf pulses to the sample. The main power

amplifier is a NMR Specialties P-103R, capable of applying up to five kilowatt

rf pulses.

The "single coil" probes that are used combine suggestions by Waugh8

and Lowe . The rf magnetic fields produced are about 75 gauss, which makes the time

for a "rrj2 pulse" for Ga about 3.3 microseconds. Recovery time of the system

after a pulse (until the NMR signal may be seen) is on the order of 3 to 5 micro-



seconds at 20 megahertz. For Ga in GaAs, the NMR signal decay time (T2 ) is

about 150 microseconds. Thus our pulse amplitude and recovery time have been

more than adequate for these experiments.

d. NMR Signal Detection and Averaging

The transient response of the nuclear magnetization after the

stimulating rf pulse is amplified and detected by a combination of commercial

apparatus, and circuits like those described by Waugh and Lowe. The signal

may then be viewed on an oscilloscope screen or undergo analog-to-digital

conversion. It is this latter process that provides the large signal-to-noise

ratio required for our experiment.

We have constructed a digital processor and computer interface to

provide the following signal averaging process: (1) analog-to-digital conversion,

(2) temporary storage of data in a high speed buffer memory, (3) transfer of

data to the memory of a small computer, (4) averaging and simple manipulation

of data by the computer, and (5) transfer of data to IBM-compatible magnetic

tape for use on a large scale computer.

The analog-to-digital converter samples the NMR signal at a maximum

rate of once every 200 nanoseconds, and converts the amplitude to an eight-bit

binary result. This result must be temporarily stored, since the data rate is

too high for present-day computers. Timing and data transfer are accomplished

with digital circuitry designed and constructed entirely in this laboratory.

This circuitry will be described in detail in a paper now in preparation (see

Appendix B).
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The small computer is a Digital Equipment Corporation PDP-8/E. It

has internal interfacing to allow display of memory contents on an oscilloscope,

and to record data on a cartridge-style magnetic tape recorder. Simple addition

of incoming data to the previous data stored in the computer improves the signal-

to-noise ratio, since the signal amplitude adds up more rapidly than the noise.

Memory locations currently available in our computer allow us to sample

up to 1024 points per transient signal. This provides a very detailed picture

of the NMR signal. This signal can be Fourier transformed to show the usual

frequency domain line shape, or manipulated directly to find certain average

values, such as the second moment.

Another feature available in our interface allows analog-to-digital

conversion to be done at selected times during the decay. This aids in analyzing

the complicated structure of the signal resulting from a pulse sequence.

Finally, we have constructed a simple interface that permits. us to

use an IBM-compatible magnetic tape deck for recording the data from our computer.

We are then able to transfer the data to the William and Mary IBM 360/Model 50

computer, and to take advantage of the library facilities and peripheral

equipment of a full scale computer center. This allows, for example, display

of the data by a CalComp plotter-see Figures 3 and 4. A more complete description

of the interface has been given in a paper submitted to the Review of Scientific

Instruments (Appendix A).

2. CW NMR

10
We have available an NMR spectrometer built by D. R. Torgeson, and a

Varian V-4230B crossed-coil rf probe. This combination has an excellent signal-to-

noise ratio, and samples and frequencies are easily changed. We also have a
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Northern Scientific model NS-561 Signal Averager. This unit has also been

interfaced to the small computer, and thus may have its data transferred to

the IBM system.

3. Magnet

Fields of up to 19.4 kilogauss are provided by a Varian model V-3900

electromagnet and power supply. The field is stabilized with a. Varian Mark I

Fieldial Hall effect device. This system was chosen for its combination of

strength, homogeneity, and stability of field, all of which are essential to

the experiments proposed here.



IV. ANALYSIS OF DATA

In this section, the results of Ga NMR studies on two different

samples of GaAs will be discussed. This represents the data that had been

analyzed by the completion date of this grant; however, far more data have

been taken and analyzed during this past summer. Those data will be briefly

described at the conclusion of this section.

Figures 3 and 4 are computer plots of typical transient NMR signals

from the two samples. This signal, usually called the free induction decay

(FID), is actually composed of 1024 separate data points that have been

accumulated by the signal averaging system discussed in Section III. The

plotter has interpolated between points, making the signal appear continuous.

A pure, undamaged sample of GaAs gives the Ga6 9 FID shown in Figure 3.

The signal averaging process is actually initiated before the rf pulse, giving

rise to the horizontal baseline to the left of t=0. At t=O, the rf pulse is

applied, and the FID begins after the pulse. There is a short dead time (about

10 psec.), and some noise generated by the piezoelectric response of the crystal

at the very beginning of the FID. The remainder of the signal is nearly Gaussian in

shape, but with a pronounced oscillation - seen most clearly in the negative-going

curve around t=480 psec.

Figure 4 is the FID of Ga6 9 in a GaAs sample that was heated to 8000C

to create vacancies, then quenched rapidly to room temperature to trap them.

According to Pearson, Potts, and Macres,11 the number of vacancies present should

19



C

0

CL

cro
t3 *.

cca

C-

0 (

C

o
I

C;_

'-12.00oo ooo 12 .00 24.00 6.oo 8.o 60.00oo 72.00 .00oo eb.oo00
TIME (IN M I rRflIFMlIN ,i) m i ni



0
C(3

0

o.

ca

Do

o
C *"

cu)

T I ME ( I N M I CROSFrTINn s) i n I

0

'-12.00 0.00 12h.00 2L1.00 3'6.00 48.00 60. 00 72.00 8 .00 9 .00
TIME (IN MICROSFrflNNl) win



22

be about 5 x 1016 cm .- 3 This curve appears more exponential in character than

Figure 3, and the oscillation is smaller.

Similar curves were obtained for these samples as a function of the

orientation of the sample in the magnetic field. The data were transferred to

magnetic tape, then processed in the William and Mary IBM 360 
computer.

Least-squares best fits were obtained for these data, assuming a

modified form of the function given in Eq. (23). The form used was

e4t)-C 4 2 ± t bt (25)

The essential difference is that the experimental results are expressed in the

time domain, while Eq. (23) is in the frequency domain. The curve fitting is

quite successful, as seen in Figures 5 and 6.

In order to compare the theory to these results, Eqs. (18) and (24)

are used. The second moments of the experimental results are found from =te

Figures 7 and 8 display the experimental second moments of the two

crystals as a function of crystal orientation in the magnetic field. Also shown

are the Van Vleck calculations of the magnetic dipole-dipole second moment,

and a best fit curve of the functional form

<'AP) =A + B (E) - A e l 2e -) cos'e3 . (-6

This function is similar to Eq. (18), and should have the correct angular

variation for all of the NMR line broadening mechanisms present in this material.
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Line broadening mechanisms

As discussed by Sundfors,2 there are three line broadening mechanisms

important to the data taken in these samples. They are: magnetic dipole-diple,

electric quadrupole with impurity-caused field gradients, and nuclear pseudo-

exchange interactions. In the undamaged crystal, our calculation of dipole-

dipole and exchange effects are in agreement with Sundfors. Further, the

exchange effects are not different in the damaged crystal. The remaining questions

are thus: how does the dipole-dipole contribution vary with defect concentration;

and more importantly, how sensitive is the quadrupolar broadening to the defect

concentration?

The dipole-dipole interaction varies with defect concentration due to

the first-order quadrupole frequency shift of the NMR 3/2-1/2, -1/2+ -3/2

transitions. This shift makes part of the dipole-dipole hamiltonian non-secular,

reducing the line broadening and causing an apparent narrowing of the resonance

line. This effect is a small change - 10% or 20% - and we have discussed it in

an earlier report on these experiments.
1

Most of the change in second moments between Figures 7 and 8 is due to

quadrupole mechanism proposed in Section II. The enormous change due to charged

defects verifies our hypothesis that NMR is a sensitive tool for detection of

these defects.

To be quantitative in this analysis, one must change the direction

cosines expressed in Eq. (18) to the angle of orientation of a sample in the

magnetic field. First, using the general expression rl + +P =

one can show

x3/\ ~ IJZZL
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These samples were rotated about the <110 axis (i.e. the 110) axis

is held perpendicular to the constant magnetic field. ). Defining the angle

between a<ITO)axis and the magnetic field as e , Eq. (18) becomes

-

where f(B) is the function defined in Eq. (26). The quadrupole contributions

to the second moment have the same functional form as the angular dependent part

of the dipole-dipole contributions. For example, the Van Vleck calculation of

dipole-dipole broadening for Ga69As gives

<6 2 -. 299 /.33 -f(e) ( ). (27)

In order to find the quadrupole contribution Ad9 to the composite

second moment CC , one must subtract all other contributions from the composite

moment, as shown by Eq. (24). Adding Sundfors' value of the isotropic exchange

coupling, <(w) e .= .4,2 ,~ , to the dipole term given by Eq. (27),

the sum of terms other than quadrupolar becomes

0= \, >( + <6 =.5 q 1 .33-). -(1)

The composite second moments for the undamaged crystal, ( )u , and

the damaged crystal, (OC D , are given by the best fit values for the

parameters A and B in Eq. (26). The curves shown in Figures 7 and 8 are

(c ) =.4P71 + 1.22 f(o) (undamaged),
(29)

and (/ .48 4 43o (e) (damaged).
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Using Eqs. (24), (28), and (29), one finds

and (30)

D= zo + .q5ke) .

If no other broadening mechanisms are present, the coefficient of f(G)

in Eq. (30) arises from quadrupolar broadening. Two aspects of Eq. (30)

make this attribution suspicious - the existence of an isotropic contribution,

and the negative coefficient of f(e) for the undamaged crystal. The latter

implies that the dipolar and isotropic exchange interactions give contributions

larger than the experimentally measured moments. More recent data have shown that

a pseudo-dipolar exchange interaction is present. This will be reported at a

later date. For now, for order-of-magnitude purposes, we will assume the

coefficient 4.95 in the damaged sample is due entirely to quadrupolar broadening.

The angular dependent part of A\4A gives us 69L in Eq. (18').

Using the values a-= l3o/j (assuming an As defect), E(W=O) = 12.5

e= , = 10 C-1 , and Q from Table I, we calculate Z =2.5x 1i O c

This value is an order of magnitude smaller than that predicted by

11 to 3
extrapolation from the data of Pearson, et.al. ( = 5 to o -3 ).

Considering the crude analysis here, this discrepancy is not at all disturbing.

The important point is that we have easily detected a defect concentration that

is lower by a factor of at least 100 from previous measurements.

More Recent Data and Analysis

During this past summer, considerable additional data were taken.

Ga69As, GaT 1As, and GaAs75 resonances were observed as a function of crystal

orientation; for an undamaged, pure crystal, a crystal doped with Si (carrier

concentration 4x 1016 cm-3 ), and pure crystals heated to 5000 C, 6000 C, and
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7000C and then quenched at room temperature. Signals were observed carefully

immediately after quenching in order to observe any annealing effects.

Using all three resonances, one can calculate the contributions of

all broadening mechanisms. The quadrupole broadening thus calculated gives

impurity concentrations that generally agrees in magnitude with the data of

Pearson et al., but at even lower concentrations than cited here.

As the analysis of these data is completed, and the results prepared

for publication, N.A.S.A. will be sent copies as addenda to this report.
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Abstract

A simple and inexpensive computer interface for write-only parallel

data transfers from a Digital Equipment PDP-8/E minicomputer equipped with a

KA8-E Positive I/O Bus to some peripheral device is described. The data trans-

fer is under program control and is thus versatile enough to transfer data to

a number of devices. The application discussed here is a data transfer to

magnetic tape using a Cipher Model 100 incremental tape drive, for later

processing by a large computer.



It is often advantageous to collect data using a laboratory minicomputer

and then to transfer the data to a larger computer for analysis. In this laboratory,

signal averaged pulsed NMR data are recorded on IBM compatible 9 track magnetic

tape by our Digital Equipment Corp. (D.E.C.) PDP-8/E, using the interface described

here. The interface allows parallel data transfer under program control and is

able to couple the PDP-8/E through the Positive I/0 Bus KA8-E to many devices

merely by changing the output cable.

We record data temporarily at the end of each run using a Tennecomp TP-1375

cartridge recorder, and transfer it as a group to IBM compatible tape at a later

time. Thus the tape drive is only occasionally needed and can be shared with other

research groups. In addition, punched paper tape that is used by many laboratory

instruments can be read into the PDP-8/E through the associated teletype, converted

to the appropriate format, and transferred to the magnetic tape.

The circuit design, shown in Figure 1, requires eleven integrated circuits.

Three MC3001 are used to buffer the data, preventing possible loading and cable noise

problems. As designed, data are always present on the peripheral inputs, but if

necessary the twelve AND gates could be enabled by a buffered input/output pulse

(BIOP) from the KA8-E.

An eight input NAND gate (MC3015) detects the correct device code (as

designed, 248) specified by the buffered memory bits 3 through 8 (BMB 03-08). The

NAND gate output enables the instruction decoder, a one-of-eight decimal decoder

(MC4048). This design uses only the instructions binary coded 1 through 4 by

BMB 09-11. Coincidence of an instruction decoder output and a BIOP pulse on the

input of one of four AND gates (MC3001) executes the instruction.

1



Two instructions may assert the KA8-E SKIP L signal (in turn causing the

PDP-8/E to skip the next program step). The peripheral BUSY signal (after inversion)

inhibits BIOP 1 from asserting SKIP L if the program interrogates the BUSY status

(instruction 1) while the peripheral is busy. In addition, if the peripheral

detects an error, a positive level on one of four inputs is inverted and passes

through the AND gate (MC3011). This allows BIOP 2 to assert SKIP L when the

program interrogates the error condition (instruction 2). Four lamps and drivers

(MC858) are used to identify the error. Open collector NAND gates (N8881) assert

the SKIP L line. All inverters are in MC3008 hex inverter packages.

Instruction 3 causes a STEP/WRITE action by the tape drive. Finally, when

the data transfer is complete, instruction 4 causes the tape drive to write an inter-

record gap (IRG).

The External Bus cabling plugs into a D.E.C. H803 connector block. This

interface uses half of a D.E.C. W979 module. The output cabling consists of twisted

pairs anchored to another module that plugs in an adjacent slot in the block.

The recording program depends on the type of peripheral. Most parallel

data transfers can be done with a combination of the four instructions given here.

For example, this same interface is being used to transfer data to a Digi-Data Model

1700 synchronous tape drive and formatter, and directly to an IBM-360 equipped with

a special IBM 2972 Scientific Interface Control unit.

Copies of the software, both the PDP-8/E program and the Fortran program for

reading the iagnetic tape, are available from the authors.

2
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Fig. 1. Interface circuit diagram and interconnections. Cipher tape

drive error signals are (1) broken tape, (2) tape end, (3) file protect, and

(4) parity. Not shown are several inputs to the tape drive that must be

grounded for write-only operation.
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ABSTRACT

Pulsed NMR was used to detect charged defect

14 -3
concentrations as small as 2xl0 cm . An undoped type n

single crystal of GaAs was cut into several samples, and

NMR second moments were obtained as a function of magnetic

field orientation for Ga 1 , Ga , and As7 5 . The orientationally

dependent part of the Ga7
1 second moment is one half that

expected from the dipolar interaction. An explanation is given

based on interference between the dipolar and the negative

pseudodipolar interactions. There is a contribution to the

second moment due to the electric quadrupolar interaction

between nuclei and the electric field gradient (efg) associated



with point charge like defects, and it is proportional to

the defect concentration. Because there are three isotopes

we can separately identify the quadrupolar and pseudodipolar

second moments. In order to introduce crystalline defects,

samples were held at a constant temperature (500 0 C, 5500C,

6000C, 7000 C) in evacuated tubes and quenched to room

temperature. The increase in second moment is due to the

increased quadrupolar contribution, and it establishes the

defect density for each damaged sample. The pseudodipolar

interaction is observed to be independent of damage. Our

data indicate that the defects are located on the As nuclear

sites. No annealing was observed.

*Supported in part by NASA grants NGR-47-006-050 and

NGL-47-006-055 and NSF grant GH-410o82.

tBased on a dissertation submitted by one of the authors (R.K.H.) to
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I. INTRODUCTION

In III-V compounds, the broadening of the nuclear magnetic resonance

(NMR) line is due to four rigid lattice interactions. In particular, the

NMR second moments of the three isotopic species in GaAs (Ga7 1 , Ga 6 9 , and As7 5 )

contain contributions from all four of these mechanisms.

The dipolar interaction is well understood, and its contribution to

the NMR second moment may be calculated theoreticallyl. In 1957 Shulman, et al. 2 ,3

reported linewidths in undoped powder samples of GaAs larger than those expected

from the dipolar interaction alone. The additional broadening was attributed

to the indirect exchange interaction between unlike spin systems. This

4-6
nuclear exchange interaction involves an indirect nuclear spin coupling via

the hyperfine interaction between the electronic and nuclear spins. Its magnitude

depends mainly upon the s character of the electronic wave function at the

nuclear positions. More recently, Sundfors7 has observed linewidths in several

III-V compounds using both NMR and nuclear acoustic resonance (NAR) techniques.

He identified the exchange contribution to the second moments and, using the

theory of Anderson , the exchange coupling constants.

Another electron coupled interaction is the pseudodipolar interaction
4

The role of this mechanism in the broadening of NMR lines in III-V compounds is

not well established, but a large negative pseudodipolar effect (canceling some



dipolar broadening) has .been observed in the P resonance in InP 8. The

pseudodipolar interaction will be required to explain the data reported here.

In undamaged samples both the Ga6 9 and Ga7 1 NMR second moments are smaller than

those predicted by the dipolar interaction alone. In this case, the sign of

the pseudodipolar coupling constant may be unambiguously determined.

GaAs has a zinc blende structure. Thus, the efg at nuclear sites is zero

unless there are lattice defects. Randomly located lattice defects cause a random

efg at nuclear sites and broaden the NMR line. E. H. Rhoderick9 observed the

effects of substitutional impurities upon NMR line intensities. The intensity

loss with increasing impurity concentration is due to quadrupolar broadening

caused by the efg associated with the impurities. It was found that the efg

associated with ionized donor or acceptor impurities is larger than that

associated with strains produced by neutral impurities. The explanation of the

sensitivity of the NMR line to the ionized impuritiesl0 required anomalously

large antishielding factors on the order of 1000.

Gill and Bloembergenl1 reported a direct measurement of the coupling

constant relating the components of an efg tensor to an applied homogeneous

electric field. The efg induced at nuclear sites is caused partly by a distortion

of the valence orbitals and partly by a relative displacement of the Ga and As

sublattices. Taking both effects into account, the coupling constant was

explained using antishielding factors of 24 and 30 for Ga and As, respectively.

Since the induced efg is proportional to the electric field, its magnitude

-2
decreases as r in the field of a point charge. In contrast, the direct efg



caused by a point charge decreases as r - 3 . Thus the quadrupolar

interaction is dominated by the induced efg. Using this induced quadrupolar

interaction it is not necessary to introduce large antishielding factors to

explain Rhoderick's data.

Sundfors7 identified the electric quadrupolar contribution to the NAR

linewidths in samples of known carrier concentration. Comparing his measured

linewidths to those predicted by a simplified theory of the induced

quadrupole interaction linewidth, in which the number of charge centers 
is set equal to

the carrier concentration, he obtained order of magnitude agreement with the

measurements of Gill and Bloembergen.

In this research we demonstrate that NMR linewidths can be used to

detect low concentrations of charged defects in single crystals of GaAs. We

have done this with careful measurements of NMR second moments as a function of

magnetic field orientation for all three isotopic species. We identify individual

contributions from the four broadening interactions; and, using an improved theory,

we show that the first order quadrupolar contribution is proportional to the

chargeddefect concentration. Thus the identification of the quadrupolar

contribution to the second moment is a measurement of this concentration.

Defect concentrations in several samples were altered by subjecting the

samples to thermal damage. The process was similar to that of Potts and Pearson1 2

but our damage temperatures were far lower, producing fewer defects (on the order

of 5x014 cm- 3 , compared to their 1018 cm- 3 ) Using vapor pressure data we estimate

the As vacancy concentration caused by As sublimation at elevated temperatures.

In this estimate we assume that As molecules in the vapor phase are frozen



out of the lattice by the thermal quench. The vacancy concentration deduced

from the vapor pressure data is more than an order of magnitude larger than the

concentrations projected from Potts and Pearson's experiments. Our NMR measure-

ments of the defect concentrations lie about mid-way between the two projections.



II. THEORY

Consider two different nuclear-spin systems with nuclei having spin

angular momentum 'I andA , and non-overlapping resonances. The resonance

experiment is performed on the spins I. We assume that the resonance is

broadened by the following four interactions: dipolar, pseudodipolar, exchange,

and quadrupolar. The second moment of the resonance line is calculated from the

expression given by van Vleck1

where Wis the system hamiltonian, and I is the total spin operator proportional

to the observed magnetization.

Following the notation of Sundfors 
7 , we write the system hamiltonian as

+= L* + b+4S + S+ EIEX 0 S +,ES + +4PIl, (2)

where and Us are the Zeeman energies for the I and S spins, respectively. We

may combine the truncated dipolar and pseudodipolar interactionl
3 terms as



-3 (3c)

where B.. is the pseudodipolar coupling constant for like spins I, B is the

pseudodipolar coupling constant for like spins S, Bij is the pseudodipolar

coupling constant for unlike spins I and S, and rij is 
the displacement vector

from the it h nuclear site. The second Legendre polynomial is written as P2( ij),

where iJ is the angle between r.. and the Zeeman field. The exchange terms may

be written

.E (3d)

S(3e)

where A.. is the exchange coupling constant for like spins I, Zij is the

exchange coupling constant for like spins S, and Zij is the exchange coupling

constant for unlike spins I and S. The quadrupolar term W. can be written

-

where V . is the efg at nuclear site j, and A=eQ [4I(2I-1)] - , where ~I is the

electric quadrupole moment of the spins I.

By combining Eqs. (1), (2), and (3) one obtains the expression for the

NMR second moment

+ < [(D-3 AZjo I6 x ' (4)



The lattice sums in the dipolar terms of Eq. (4) may be separated

into two parts, one of which contains no pseudodipolar coupling constants.

Consider just the dipolar sum for like spin broadening. This may be written

The first sum on the right side of Eq. (5) contains the pseudodipolar contribution

to the second moment and the interference term between the dipolar and pseudo-

dipolar interactions. The second sum is just the dipolar contribution in the

presence of zero pseudodipolar interactions. This sum may be performed, and for

the zinc blende lattice it has the forml

(-n4 + y)4 y)b4)] (6)

where n , n , and n are the direction cosines of the Zeeman field in the
E ny z

crystalline coordinate system. When the sum is performed over nuclear sites on

-6
the fcc sublattice containing the spins I, Sundfors computes a=25

6 ao and

b=-118 a -6 where a is the lattice constant. For the non-resonant sublattice

-6 -6
he computes a'=2491 a and b'=-2390 ao

If the magnetic field is rotated in the (110) plane, and e is defined

as the angle between the [110] direction and the Zeeman field, then

1 4 + +n4(7)

where f(e) = 2 cos e - -cos4 . Combining Eqs. (6) and (7) we may write the

dipolar sum in terms of f(1),

Ci P, (x +



where X = (a+b)/8, and Y = -b/8. The dipolar contribution to the NMR second

moment thus contains an isotropic part, X, and a part dependent upon the magnetic

field direction, Y.

We consider now the first sum on the right hand side of Eq. (5). The

electron coupled pseudodipolar interaction is extremely short range , and we

assume that only nearest neighbors interact. Thus the first sum in Eq. (5)

vanishes because it does not contain the nearest neighbor shell. However, the

corresponding term in the expression for unlike dipolar broadening does contain

the nearest neighbor shell. The coefficients Bi. are independent of 6ij and may

be factored out of the sum. The pseudodipolar terms become

where BNN is the nearest neighbor pseudodipolar coupling constant. With this

nearest neighbor approximation, the pseudodipolar terms have the same orientation

dependence as the angular part of the dipolar contribution to the second moment,

but there is no isotropic pseudodipolar contribution.

In order to evaluate the quadrupolar contribution to the second moment

we require a specific model for the efg tensor. The efg associated with crystalline

strain is much smaller than that caused by charged impurities7 '9 and may be

neglected when both are present. Thus we assume that the efg is due entirely to

the electric field of charged crystalline defects. The general tensor relationship

between the components Vij of the efg tensor and the electric field components Ek

is given byll,
1 4



where Rijk is a third rank tensor. In the zinc blende crystalline coordinate

system Eq. (10) may be writtenll

0 E ET
V = - R,, E O Ex (11)

Ey E, c)

where R14 is the magnitude of the non-vanishing tensor components.

The component of V in the secular part of the quadrupole hamiltonian

is n'V'n, where n is the unit vector in the direction of the Zeeman field. We find

AV *=-R nl n neEynxE (12)

Since most of the nuclei affected by a given impurity lie outside the first few

near neighbor shells, we use the static macroscopic dielectric constant 6 to

approximate the electronic screening.1 5 Thus the electric field at a displacement

r from a single impurity of effective charge e* is

E r /r 3 . (13)

Combining Eqs. (4), (12), and (13), we obtain an expression for the quadrupolar



contribution to the second moment for a single impurity

_____ I 7  6  n< (14)

Due to the lattice symmetry of GaAs, summations over terms xjyj, xjzj, and y jzj

2 2 2
vanish, and summations over terms xj, y2, and zj are equal. Using these and the

properties of direction cosines we may rewrite Eq. (14)

=>,. - - ~LtI - +' E-3] ) 1 - S). (15)

We assume that the charged defects occur randomly on one sublattice.

The efg at a nuclear site is the sum of contributions from each of the charged

defects. From the central limits theorem,
1 6 the broadening due to NI impurities

is NI times that due to a single impurity, and 
the quadrupolar second moment

expression becomes

) A R (f,: (e)Z (16)

where the ratio of defect density to nuclear density pl/p has replaced the ratio

N I/N. This contribution has the same angular dependence as the pseudodipolar

second moment. Both vanish when ( =1T/2, where the Zeeman field is aligned with

the [001] direction.

-4
We have calculated the lattice sum over r. in Eq. (16). The discrete

sum was performed over a cube with an edge size of 1
6 ao . An integral was performed

over the remainder of the sample17. The result of this calculation is 33.75 a -4
0

for impurities located on the same sublattice as the nuclear spins I, and 63.31

-4
a for the impurities located on the other sublattice.0



III. EXPERIMENT

The experiment was performed on several type n single crystals of

GaAs, sliced from a single undoped, boat grown ingot, purchased from 
the Monsanto

company. The properties of the ingot were supplied by Mansanto as follows: resistivity,

1.34xi04 ohm-cm; carrier concentration, 2.4xi0
1 1 cm-3; electron mobility, 2.7x10

3

2 -l -1 4 -2
cm volt sec and etch pit density, 4.2 x 10 cm . A 50 micron diamond

saw was used to cut the ingot into several samples of nearly equal size, about

0.5cm by 0.5cm by 1.0 cm. A type n silicon doped sample purchased from

Electronic Materials Corporation was also studied. Its properties as

measured by the manufacturer, were: resistivity, .03 ohm-cm; carrier

concentration, 4x1016 cm ; electron mobility, 5x10 cm 2volt- sec-1 ; and etch pit

h -2
density, 8x10 cm .

The free induction decay (FID) following a single 900 pulse was observed

for the three isotopes in each of the samples as a function of magnetic field

orientation. The [110] axis of the sample was oriented perpendicular to the

magnetic field, and changes in the magnetic field orientation were accomplished

by rotating the sample about this [ 10] axis. In this way, the major crystalline

symmetry axes ([001], [110], and [111]) could be aligned with the magnetic field.

After a sample was studied, it was subjected to thermal damage, and each isotope

was studied again in the same manner.



In order to introduce a known defect concentration in the samples,

each was thermally damaged following the method of Potts and Pearson l2. In that

work the crystals were held at a constant elevated temperature (10000C to 12000 C)

in an evacuated vessel for 24 hours and then quenched to 0oC in less than 0.2

seconds. Vacancy concentrations were then determined by the Kossel line

technique1 2 1 8 . In our experiment much lower prequench temperatures were used

(5000C to 700°C), thus introducing lower defect concentrations. In addition, due

to the size of our samples, a rapid quench would cause macroscopic damage, so a

much longer quenched period of 10 to 15 minutes was used. Ionic mobilities in

GaAs near room temperature are quite low 
19 , so the vacancy concentration caused

by sublimation of As atoms is not expected to depend upon the period of the quench.

However, Frenkel pairs may recombine quickly, and a longer quench.period might

substantially reduce their concentration. Room temperature annealing of damaged

samples was observed by Potts and Pearson, and it was interpreted, in part, as

due to the recombination of Frenkel pairs. No annealing was observed in our

samples, so any Frenkel pairs must have already recombined. In addition, after

the quench a metallic film remained on the vycor vessel. Chemical analysis

failed, but from vapor pressure data we are convinced that it was As. It is

concluded that this slow thermal quench generates As monovacancies.

NMR measurements were made with a pulsed NMR system shown in block

diagram form in Fig. 1. All measurements were made at a fixed frequency of 14.4

MHz, with the appropriate magnetic field supplied by a Varian V-3900 electromagnet

and power supply equipped with Mark I Fieldial stabilization. The rf system,

20
with few exceptions, is very similar to that described by Ellett,et al. as
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Figure 1 Block diagram of pulsed NMR apparatus.



spectrometer B. Our gated power amplifier, however, is an NMR Specialties Model

P-103R. Also, the signal duplexer and preamplifier are those described by Lowe

and Tarr,2 1 modified for a 50 ohm system. A single coil, series tuned probe was

used. At resonance the probe impedance was 50 ohms with a quality factor of

approximately 5.

Since the sample is piezoelectric it produced an unwanted transient

signal following the rf pulse. Without special precautions this distorted

approximately the first 100 microseconds of the FID. It was suggested that such

noise may be damped by placing the sample in contact with a fluid of appropriate

viscosity. However, it was easier, and just as effective, to surround the

sample by a Faraday shield. The mylar strip was removed from a metallized mylar

capacitor, enclosed in insulating tape, and wound closely around the sample

coaxially with the rf coil. This reduced both the amplitude and the duration of

the piezoelectric noise by an order of magnitude.

Control of the experiment timing is provided by a pulse programmer

designed and constructed in this laboratory. Its operation is based upon a

256 bit random access memory divided into 16 eight bit words. On execution,

each word performs a single step of a pulse sequence, either a pulse or a delay.

Pulse and delay durations can be controlled either digitally (using alO0 MHz crystal

oscillator) or continuously (using 9601 monostable multivibrators). Two internal

step counters as well as a minicomputer interface allow the programmer to control

almost any pulsed NMR experiment.

The signal to noise ratio (S/N) of the FID following each 900 pulse was



approximately 10, too small for accurate determination of the linewidths. So

5000 FID's were signal averaged to yield a S/N of over 700.

The FID undergoes analog-to-digital conversion in an 8 bit converter,

a modified Computer Labs Model HS-802, at a rate of up to 5 MHz. Because this rate

is too great for direct computer storage, the data for a single FID (1024 eight

bit words) are stored in a buffer memory. Subsequent transfer to a Digital

Equipment Corp. PDP 8/e minicomputer takes place during the NMR longitudinal

relaxation time, T1 , at a rate set by the computer. The computer maintains

storage of the most recent FID and the accumulated sum. Either

of these may be displayed on an oscilloscope during T1 . When 5000 FID's have

occurred, the computer transfers the accumulated data onto 9 track, industry

compatible magnetic tapes. The analysis of the data was performed with an IBM

360/50 computer.



IV. ANALYSIS

Lowe and Norberg
2 2 have shown that the moments of the NMR line can

be determined from the time derivatives of the FID 
at t=O by using the relation

where OAUd) is the 2nt h moment and g(t) is the FID. However, the t=O

point is precisely in the center of the rf 
pulse2 3 , and the FID derivatives

cannot be measured there directly. One method of obtaining second moments from

the FID is to fit the visible part to an analytic function 
and to extrapolate

back to t=O in order to evaluate the derivatives. The accuracy of this method,

of course, depends upon the ability of the function 
to describe the FID.

We used a least squares fitting routine
2 4 to fit the FID with two

functions. The Abragam function

q(? = \(- l (18)

was found to approximate the Fl
9 free induction decay in CaF2 very well.25 Our

data appear qualitatively similar to the fluorine FID. However, when the

Abragam function was fit to GaAs FID's, there were systematic 
deviations. Fig. 2

shows the generally unsatisfactory character of the fits 
of this function.
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aFigre 2 Ga FID and best functional fit using Abragam function.



F1 9 has spin and so zero quadrupole moment. Thus one would expect the

GaAs FID shapes to be modified by quadrupolar broadening. For half odd integral

spins the first order effect of an efg is to leave the transition between 
the

1/2 to -1/2 energy levels unchanged and to split the other transitions into

satellites. If the efg is random this leaves the central component of the line

unbroadened while the remainder of the line broadens. Thus the FID has a fast

decaying component arising from the satellites and a slower decaying component

arising from the central component. In the case of spin 1=3/2 nuclei, the satellite

lines make up 60% and the central component lines the other 40% of the total

resonant absorption. Thus the FID can better be described by a sum of two

Abragam functions. The function

(eL): [ exp(a/a>K[%p (... / {i.)]? (19)

describes the GaAs FID very well, as shown in Figs. 3 and 4. The angular

frequency second moment of a FID described by Eq. (19) is 1

Based on the above reasoning, more adequately discussed in the Appendix,

one expects to find I1/I2=2/3 and~ ~. However this is not always

the case. We find that the ratio I1/I2 departs from its expected value with

increasing quadrupole interaction. The quadrupole moments as shown in Table I

obey the inequality Q7 5 )Q 6 9 >Q7 1 . In all samples the As 7 5 FID (fore #/2) is

described by Eq. (19) with I1 2) 2/3. This is also true of the Ga69 and, to a

lesser extentthe Ga7 1 FID in samples with large defect concentrations.

One reason for this departure is our choice of the Abragam function as

the functional form of the FID in the absence of the quadrupole interaction.



TABLE I. RELEVANT NUCLEAR PROPERTIES
a

Electric b

Natural Magnetic Quadrupole R14

Abundance Moment Moment

Isotope (%) I (AN) (barns) (1010 cm -l )

Ga71  39.8 3/2 2.5549 .12c 1.06e

Ga69  60.2 3/2 2.0108 .19 1.28e

As7 5  100. 3/2 1.4349 .294 1.72e

a. F. Bovey and A. Tiers, NMR Tables (Wiley-Interscience, Inc. New York 1967),

5th ed.

b. The magnitude of coupling constant relating efg to applied electric field 
is

adjusted for the given.values of quadrupole moment.

c. G. F. Koster, Phys. Rev. 86, 148 (1952).

d. V. S. Korolkov, A. G. Makhanek, Opt. Spectry. USSR (English Transl.) 
12,87 (1962).

e. D. Gill and N. Bloembergen, Phys. Rev. 129, 2398 (1963).
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The Abragam function is successful in describing the FID of a spin 1/2 system

broadened by the dipolar interaction only. The presence of the like nuclear

exchange interaction can alter the shape of the FID substantially without an

26
effect on the second moment2 . Further, in our lineshape calculation in the

Appendix we do not allow the width or shape of the Abragam function to be

affected by the quadrupolar interaction. Clearly the presence of a large efg

can cause parts of both the like spin dipolar and like spin exchange interactions

to become non-secular and may substantially alter the lineshape as well as the

second moment.

Certainly part of the deviation of the experimental lineshape from

our simplified theory is due to our inability to observe enough of the initial

part of the FID so that the fitting routine may determine the parameters

accurately. From our theory, the satellite component of the As 7 5

FID ate=360 in a sample of defect concentration 10 cm should have a

half width of 23 $sec. Thus we can detect only three quarters of the initial

intensity of the As7 5 FID. Clearly the As75 data are unreliable in this region

of defect concentration for this magnetic field orientation, the [111] direction.

In order to measure the broadening in samples of large defect concentration, second

moment measurements were made near the G=IT/2 orientation where the initial part

of the FID is slow enough to observe accurately. However, even here there are

fitting difficulties in samples with large defect concentrations.

As a result of the deviation of the fitting parameters of Eq. (19) from

their expected behavior, one can not always interpret these parameters physically



as in the Appendix. However, based on the agreement between the FID and Eq. (19)

the second moments are believed accurate. We use only the second moments in the

following analysis.

It was shown in Section II that a rotation of the magnetic field about the

[lT0] direction results in the second moment varying as

(a H) = C + Df(e) . (20.)

The contributions to the isotropic part C are from the dipolar and exchange

mechanisms, while the contributions to D are from the dipolar, pseudodipolar and

quadrupolar mechanisms. Parts C and D were determined by fitting the

measured second moments at known e to Eq. (20). Generally, sixteen orientations

covering a rotation of 1200 were used to determine C and D. However, in samples

with large defect concentrations only the orientations close to e =71/2 were

used, as few as six orientations. Figs. 5, 6 and 7 show the second moments versus

orientation for several samples. Table II contains the coefficients C and D for

each isotope in each sample.

Given these isotropic and angular dependent parts, the second moment

contributions from the different broadening interactions may be identified. The

pure van Vleck dipolar contributions are well known 1 7 , and they are for each

isotope:

<4 .2.5 + V1j9L%e) ss 2 (21c)

where the subscript denotes the broadening mechanism, and the superscript the

isotope. NAR data 7 on GaAs yield exchange coupling constants. Including only

nearest and next nearest neighbor interactions, the unlike exchange contributions



TABLE II. MEASURED SECOND MOMENTS AS A FUNCTION OF

MAGNETIC FIELD ORIENTATION. THE SECOND MOMENT

IS EXPRESSED AS C + D f(() IN UNITS OF GAUSS 2

Ga7 1  Ga6 9  As7 5

Samplea C D C D C D

M7U .58±.02 .68±.06 .64+.03 1.18±.08 1.44±.07 4-.73.36

M2U .64±.03 .63±.07 .64+.03 1.22±.10 1.32±+07 5.58±.66

M3U .65±.04 .69±.10 .72+.03 1.30+.11 1.37±.01 4.63±.04

M7D500 .58+.03 .77±.08 .63±.01 1.79±.02 1.40 + . 1 0  7.30 + . 85

M2D550 .64±.03 1.30+.10 .66±.04 3.92+±.19 1.23±.08 17.2±1.23

M3D600 .69+.01 1.84±.03 .72+.04 5.05+.51 1.15+.08 19.4+1.60

M7D600 .63±.04 1.98+.13 .72+.04 6.08+.45 1.30+.14 24.9±1.61

M5D700 .65±.04 2.40+.23 .88+.07 7.46±+.58 1.66±.14 21.2±1.14

EMC(Si) .72+.05 3.18±.29 .95+.08 7.34±+.73 2.83+.23 25.1+2.34

a) Sample identification M2D500 means a Monsanto crystal quenched from 5000C.

Undamaged samples are labeled with a U. EMC(Si) is a Si doped sample purchased

from Electronic Materials Corp. with a carrier concentration of 4x10 6cm-
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to the second moments are

) - 5 ss (22a)

(A 58 auss (22b)

AHZ'S:5 . , 5 L S0a5 (22c)

Subtracting the contributions (21) and (22) from our data leaves only

the contributions from the quadrupolar and pseudodipolar interactions. Our

analysis predicts that these contributions will have no isotropic part, and, as

can be seen from Table II and Eqs. (21) and (22), the isotropic remainder is

negligibly small for the two Ga isotopes. In samples of large quadrupolar

broadening, however, the isotropic remainder is larger than predicted on the basis

of dipolar and exchange contributions.

In order to separate the contributions from the quadrupolar and

pseudodipolar interactions we use the fact that the pseudodipolar broadening in

2
gauss is the same for both Ga isotopes. This is because only the four nearest

neighbors, all As nuclei, contribute significantly to the pseudodipolar broadening.

Then the difference in the remaining angular parts of the Ga second moments must be due

to quadrupolar broadening. Both Ga isotopes experience the same random efg, so

the difference in their quadrupolar contributions must be due to the difference in

their nuclear properties. Since )<'~ C : / , we may write that

K K (A~A (23)

where K = )1dP1(o .

S 69 71 69
If D and DD are the remaining angular parts of the Ga and Ga second moments,

R R



respectively; then
-IU R 9 (24)

The relevant nuclear properties are shown in Table I. The values of

R14 have been adjusted for more recent values of electric quadrupole moment.

Gill and Bloembergen give different numbers for the values of R14

for the two Ga isotopes. Physically we see no grounds for this difference, and

10 -1thus a weighted average value of 1.2xl10 cm is used for both. The

Ga6 9 value is weighted heavier because the experiment on Ga was probably more

accurate, due to the better S/N and greater quadrupole shift than Ga7 1 . Another

experimentalmeasurement of RI4 has been performed 4 . In this experiment R14

was measured dynamically by observing the nuclear transitions caused by an rf

electric field. The evaluation of RI4 involves more manipulation than the

straightforward experiment of Gill and Bloembergen. For this reason the static

measurements of R14 are used here.

Once (dW and (BH -9 have been established we may find

the Ga pseudodipolar contribution

H- 9 <a(K-) (25)

Comparing Eqs. (25) and (9), we obtain an a quadratic expression for the

B 71 69
pseudodipolar coupling constant BNN in terms of DR and DR . There are two

solutions for BNN' and this experiment cannot distinguish between them. In the

case of GaAs both solutions are negative in sign.

The pseudodipolar interaction is proportional to the magnetic dipole

moments of the interacting nuclei 5 . Thus we may write

' >P (26)



71 69
where .4 and .6 are the relative abundances of Ga and Ga , respectively. The

quadrupolar second moment contribution is just the remaining angular part, D
7 5,

less the pseudodipolar contribution ( . With the quadrupolar

contributions to the second moments determined, we may calculate the concentration

of charged defects. For nuclear spin I = 3/2, Eq. (16) reduces to

Z (27)

The defect density /P is found from Eq. (27) by identifying (AH )' with

the measured quadrupolar second moment. Table III contains the quadrupolar second

moments, the pseudodipolar coupling constant, and the charged defect densities

for each sample.

Agreement of the defect densities as measured by Ga and As resonances

is obtained only if we assume that the defects are preferentially located on the

As sublattice. When this is true, the As nuclei are generally further from a

defect than the Ga nuclei and will experience a smaller quadrupolar interaction.

Thus the value of the lattice sum in Eqs. (16) or (27) depends upon which sub-

lattice contains the defects. The defect densities listed in Table III are

calculated assuming As monovacancies.

Another assumption in the calculation of the defect densities of Table III

is that the effective charge of a defect is the electronic charge, or e*=e. We

assume a model in which the GaAs lattice is mostly covalently bonded, but retains

some ionic character. The calculation of Harrison2 7 yields a net charge of

+0.87e on the Ga site and a net charge of -0.87e on the As site, where the electron



TABLE III. QUADRUPOLAR SECOND MOMENTS, DEFECT DENSITIES, AND PSEUDODIPOLAR

COUPLING CONSTANTS. DEFECT DENSITIES ASSUME AN ARSENIC MONOVACANCY

OF CHARGE e.

(gaussDefect 1 5  Pseudodipolar

H (gauss) Density (101cm- 3 )  Coupling
As Measured By Constant

Sample Ga 7 1  Ga6 9  As75 Ga As BNN

MTU .17±.03 .67+.13 3.85+.41 .21±.04 .24+.03 -1.54, -.46+.05

M2U .18+.04 .73±.16 4.75+.70 .22±+.05 .30+.05 -1.52, -.48+.06

M3U .20+.05 .81±.20 3.83+.34 .20+.06 .23+.02 -1.53, -.47+.08

M7D500 .34±+.03 1.36±.11 6.62+.89 .42+.04 .42+.06 -1.47, -.53±.06

M2D550 .86±.07 3.48±.28 16.6+1.28 1.07+.09 1.04+.08 -1.48, -.52+.09

M3D600 1.12+.17 4.51±.68 18.5+1.66 1.39±.21 1.16+.11 -1.57, -. 43+.08

M7D600 1.33±.15 5.36±.62 23.7+1.70 1.65+.20 1.49±.11 -1.65, -. 35+.12

M5D700 1.67+.26 6.73+1.04 19.8±1.44 2.07±+.2 1.25+.10 -1.70, -. 30+.18



has charge -e. If we remove a neutral As atom from the lattice and allow

electronic charge shifts on only the four nearest neighbors, then each neighboring

Ga ion acquires a net charge of 0.55e. Now there will be a certain ionization

energy for these four neighboring Ga ions to collectively give up one electron

to the conduction band and in the process acquire an additional .25e charge each.

Then each Ga ion has a charge 0.9e, very nearly the 0.87e each had before the

vacancy was produced. This small change in effective charge implies a small change

in the bonding orbitals. On this basis we expect that the activation energy for

ionization is small. The induced efg is sensitive to the change

in the charge distribution. This difference is just 0.87e localized at the

site of the As vacancy and +0.03e at each neighboring Ga site. This appears

very much like a point charge defect to all nuclei, even the nearest Ga neighbors.



V. DISCUSSION

a) Pseudodipolar Interaction

The presence of the pseudodipolar interaction in III-V compounds has

been recognized only recently . One reason for this is that the nuclei in

these compounds generally experience quadrupole interactions ( P31 is the only

exception). Since the magnetic field orientation dependence of the second

moment contributions from each interaction has the form C+Df(e), the quadrupolar

broadening can easily mask the effect of the pseudodipolar interaction. There

would have been no clear evidence of the pseudodipolar interaction in this experiment

had not our crystals been good enough so that the second moments of the Ga resonances

were smaller than those calculated from the dipolar interaction alone. We now

expect that the pseudodipolar interaction will be found in all III-V compounds.

There have been several theoretical treatments of electron coupled

interactions, both from a band structure approach and using localized bonding

models.13,28,29 In order to calculate the coupling constants from band theory,

greatly simplified band structures were used. These calculations are very coarse.

The localized bonding model calculations predict the negative sign of .. observed

13 8
in TiCl3, InP , and now in GaAs. However, these calculations do not agree

quantitatively with our data or the InP data.

In the treatment by Clough and Goldburg 3 , it was noted that while



the absolute magnitude of %.. and Z.. depend upon the degree of covalency A

of the bond, the ratio B/A./ is independent of . In their model they

find that this ratio has a maximum value of 1/2 for purely p orbitals. Larger

values have been measured in III-V compounds. Englesberg and Norberg observed

a IB ij/ j ratio of 1.8 in a single crystal of InP and 1.5 in a powder sample.

We measure a value of .73 or 2.2 in a single crystals of GaAs, depending upon

which solution of Eq. (9) is.physical.

Clough and Goldburg developed their expressions for TlCl crystals.

One should not expect that the same model can accurately describe III-

V compounds. Their method begins by assuming a fixed degree of covalent

character to the bonds. This covalent part of the bond is then represented by

a variable admixture of s and p orbitals on each of the atoms contributing to the

bond. They then find, using second order perturbation theory, an expression for

the ij /ij ratio as a function of the amount of s and p character in the

bond.

The application of their model to GaAs has two major defects. It does

not account for the d state admixtures in the wave functions that are known to

be important. The second problem is that in polar semiconductors the wave

function of valence electrons moves toward the anion 27(As), while the wave function

for the conduction band shifts toward the cation
3 0 (Ga). Since the exchange and

pseudodipolar interactions are related to the overlap of the valence and conduction

band wave functions, a model like Clough and Goldburg's, that assumes a fixed

covalent character to the bond for both the valence and conduction bands,will miss

the consequences of the wave function shift betweenthe cation and the anion. A

modification of their calculation that accounts for the relative displacements of

valence and conduction electron wave functions and the d state admixtures should



be more accurate.

b.) Quadrupolar Effects

An independent method of estimating the defect concentration is

desirable, and the experimental data of Potts and Pearson enable one such

determination. Their minimum quenching temperature was 100000C, generating a

18 -3
defect density of e 2 xl0 cm . Thus we must extrapolate over three orders

of magnitude to compare with the defect density expected following a quench from

a temperature in the 50000C to 70000 range. In Fig. 8 the log of the defect

-1
density is plotted against the reciprocal quenching temperature, T . The measure-

q

ments of Potts and Pearson are shown, as well as the dashed line showing the

extrapolation based on their entropy and enthalpy values for the formation of

a vacancy.

It is clear that our observed concentrations are greater than those pro-

jected. However, Potts and Pearson expressed some uncertainty in the proportionality

constant relating the rms deviation in lattice parameter and the concentration of

monovacancies. This puts the accuracy of their measured vacancy concentrations in

doubt by a multiplicative constant. Further, the reliability of an extrapolation over

three orders of magnitude is questionable. In Fig. 8 it can be seen that a small

error in the activation energy found at a defect concentration of 10 9 cm 3 makes a

15 -3substantial difference when extrapolated to 10 cm 3 . In addition, there is no

a priori reason to believe that the same physical mechanism is dominant over the

entire temperature range.

We believe that the As vacancies are caused by the As atoms lost to

the equilibrium vapor phase during the heating process. The equilibrium As2 and

As4 vapor pressures are known31 as a function of temperature in the 6750C to 9250C
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of that temperature.



range. Thus we can calculate the number of As atoms removed from a sample heated

in an initially evacuated tube of a given size. The ratio of this number to the

sample volume is the concentration of As monovacancies produced by this process.

This calculation is shown in Fig. 8 as the solid line. Using the condition

that each defect of charge e is located on the As sublattice, and using the low

frequency dielectric constant for E , our observed defect concentrations are

smaller than the vapor pressure calculation. This calculation is meant for order

of magnitude comparison, and it assumes that the ratio of tube to sample volumes

was 10 for all samples. Generally, our tube volumes were larger, so the solid

line in Fig. 8 should represent the minimum number of defects produced.
3 2

If the sample behaves as an infinite source of As vapor, supplying

whatever is necessary to reach equilibrium at a given temperature, then the defect

density present following a quench depends additively upon that prior to the

quench. In order to determine the temperature dependence the defect density in

each sample prior to the quench must be subtracted from the measured density

following the quench. Our data in Fig. 8 have been adjusted to account for

prequench defect densities.

The slope of our lowest temperature data is in agreement, within

experimental error, with the vapor pressure activation energy. Using the two

most reliable temperatures, 500 0 C and 550 0 C, we measure an activation energy of

1.5 ± 0.1 eV. The activation energy reported by Potts and Pearson is 2.0 eV, and

the vapor pressure data yield 1.4 eV.

There are several possible explanations for the fact that our measure-

ments of defect concentrations are smaller than those calculated from vapor



pressure data. One is the dependence on the experimental value of the product

R2 Q A small error in the values of R14 or Q can make a substantial

error in our analysis of the defect densities. The error bars shown in Fig.

8 do not account for errors in these quantities.

Another explanation is that the thermal damage did not produce as many

vacancies as predicted. This could have occurred in two ways: 1) the sample

was not in thermal equilibrium with the vapor, so the vapor phase did not consist

of as many As molecules as predicted; or 2) the vapor pressure data are wrong.

Using self diffusion data 1 9 it is estimated that the sample will reach thermal

equilibrium in approximately 10 hours, and also it is unlikely that the As vapor

can re-enter the lattice during the quench. Further, the vapor pressure data

accuracy is well established by several workers,3 1 so we have confidence in the

number of As atoms in the equilibrium vapor phase. It is concluded that

at least as many vacancies were produced as predicted by the vapor pressure data.

This experiment measures the charged defect concentration. The effect

of the strain caused by an uncharged impurity is not sufficiently strong to be

noticed when charged defects are also present. Another possible

explanation of our apparently low defect concentrations is that not every

As vacancy acquires a charge of magnitude e. This can happen in two

ways. One is that each As vacancy assumes an effective charge e* such that e*< e.

However, we have already shown that the model in which e*=e discussed in Section IV

is reasonable. The other is that the activation energy for-ionization of the defect

is such that at room.temperature not all the impurities are charged. An experiment

investigating the temperature dependence of the NMR second moment is expected

to check this latter possibility.



Our analysis uses the induced quadrupolar interaction, and the efg

-2
associated with a charged defect decreases as r because we have assumed that

the defect appears as a point charge. However, electronic screening or defect
-2

complexes may exist, causing the efg to decrease faster than r-2. We have

calculated the Debye-Hickel screening length for the Monsanto sample and find it

to be negligible, so screening by free electrons is not important. Defect

complexes can, however, make a substantial effect. For example, an As vacancy

may pair with an acceptor to produce a localized electric dipole moment.

In this case the efg will decrease as r , the effective broadening range of the

defect will be reduced, and many more impurities will be necessary to produce a

given quadrupole contribution to the second moment. A double resonance experiment

detecting nearest nuclei of the impurity as the rare spins will address the

question of defect complexes.

c) Experimental Limitation

It is possible that the low values of defect concentration measured in

samples quenched at 600C and 7000 C are accurate. This effect could be caused by

vacancy clustering or vacancy-acceptor pairing. However, it is more likely that

that these low values are due to the current limitations in our experiment and

analysis. There are several trends in the data that indicate that the present

15 -3
measurement of defect density errs if concentrations are larger than w105 cm- 3

One trend, discussed in Section IV, is the observed deviation of the FID functional

fitting parameters in Eq. (19) from physically interpretable quantities. This

deviation is always present in the As 5 and Ga69 data. It appears in the GaT7 data



for samples quenched from 600 C and higher. We also find that the increases

in the second moment caused by thermal damage at 6000C and 7000C are proportionately

smaller for nuclei with larger quadrupole moments. That is, the ratios of the

increase in the Ga71 second moment to the increase in the Ga6 9 and As7 5 second

moments are greater than expected. These ratios should be fixed by the nuclear

properties. It is clear that the fast component of the FID decays so quickly in

the presence of these large quadrupole interactions that our fitting analysis is

not sensitive enough to it. With our analysis this results in a deviation in the

pseudodipolar coupling constant and a disagreement between the defect densities

as measured by Ga and As resonances.

Additional evidence that this experiment cannot measure relatively large

defect concentrations is seen in the data for the Si doped sample. The Ga6 9

second moments are much smaller than one expects from the large second moments of

Ga7 1 . To an even greater extent, the same is true of As7 5 . Assuming that the

pseudodipolar interaction is the same in all GaAs crystals, and assuming that the

ionized Si donors are located on Ga sites, then the Ga7 1 data indicate a charged

defect density of 6.4x101 5 cm- 3 , where we have accounted for the Debye-Hilckel

screening. Hall effect measurements yield a carrier concentration of 4x1016 cm 3 ,

so there are at least that many ionized impurities. With our current experimental

limitations, this technique is too sensitive to accurately measure charged defect

concentrations greater than 1015 cm 3 .

We conclude that our present experiment does not dependably measure

frequency second moments larger than 5 kHz2 . This corresponds to a FID half width

of approximately 70 psec. In the Ga 71 , Ga , and As75 resonances this corresponds



to charged defect densities of 2.5x101 5 cm-3 , 910 cm- 3 , and 2x101 cm

respectively. In order to make equivalent cw measurements, excellent S/N is

required at least as far as 5 kHz from the center frequency. With improved

damping of the piezoelectric noise and with spin locking techniques we expect

these upper limits to be extended to charged defect densities near 1017 cm- 3 . At

these concentrations we expect that second order quadrupolar effects will be

important, and that the lineshape will have changed substantially.

The lower limit of measurable charged defect concentration would occur

where the quadrupole contribution to the As second moment is just measureable,

say 0.1 gauss . This corresponds to a defect density of 6x1012 cm on the As

12 -3sublattice or 3x10 cm on the Ga sublattice, representing a defect to atom

ratio of the order of 10-10 . When this method is applicable, it rivals the

sensitivity of neutron activation measurements, and in addition, the NMR method

can observe vacancies.

In summary, while questions remain about the effective charge and the

volume dependence of the defect densities, it is clear that the NMR lines in GaAs

are extremely sensitive to impurity concentrations. In fact, they are so sensitive

that in samples of carrier concentration of 101 cm this first order line shape

and second moment analysis is insufficient to treat the problem. Using this

undoped semi-insulating single crystal, we have observed a negative coupling

constant for the pseudodipolar interaction and developed a method by which the

pseudodipolar, dipolar, and quadrupolar second moment contributions can be

identified. We have made two estimates of the defect concentrations produced by

thermal quenching, using independent sets of experimental data. Our measurements



lie between these two calculations, above the Potts and Pearson projection and

below the vapor pressure estimate. That our method of analysis is correct is

adequately demonstrated by two facts. One is that the pseudodipolar interaction,

within experimental error, remains independent of the total second moment, i.e.

thermal damage. The second is that the charged defect densities as measured by

Ga and by As resonances agree for samples with small concentrations.
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APPENDIX

The objective of this appendix is to compute the NMR line shape due to

the quadrupolar interaction using a continuum crystal model. From Eqs. (3g), (12)

and (13) the satellite frequency shift of a spin 3/2 nucleus located a distance r

from a charged impurity is

- (Al)

where Oe-Q4 + n. n + n
MW (A2)

We calculate the volumeQ. about a single impurity containing nuclei with frequency

shifts greater than some A9.

The volumeJ is bounded by a revolution about the oL direction of a curve

described by

rt - - Cos+/40 (A3)

where is the angle between r and t . For 0=0 there is a minimum frequency shift

So 9/froZ
0  for the nuclei located on the crystal surface, a distance r from

the impurity. The maximum frequency shift is A)= O(/'a  , for the nearest

neighbor nuclei located at a distance a from the impurity. The volume within the



nearest neighbor sites and outside the sample are excluded from 12 . These

exclusions eliminate unphysical infinities. The line shape will be shown to be

independent of ro but not of a. Thus the sample dimension ro has no effect upon

the line shape. Further, the near neighbor distance a may be used to determine the

location of the defect sites. The volume-O is found by a simple integration,

and the result is

-CI (0(1,t6 0 V < A\> \> (A4)

0 A\ <\

The number of nuclei Ns (9) shifted by an amount greater than &> is

(N//11 ) (), where N is the number of resonant nuclei in the sample. Then

the distribution g(a9) of frequency shifts caused by a single impurity is

- Ns . (A5)

Combining Eqs. (A4) and (A5) the expression for g(A?) becomes

O/A (A6)

0) A\) (A\'



Next the frequency shift distribution due to a number NI of impurities

randomly distributed throughout the sample must be calculated. Due to the long

range nature of the induced efg, the satellite transitions of each nucleus are

significantly affected by many defects, even at very low defect concentrations

12 -3( 10 cm ). Thus one may use the central limits theorem to calculate the frequency

shift distribution due to a number NI of randomly distributed defects. According

to that theorem, the distribution will be gaussian with a second moment given by

where ( >is the second moment of g(b6). Using the relation A/vm-=/r <( 1,

one finds

< &IV)" > e d R\H , /01(A7)

where Q is defined in Eq. (7), and pI is the charged defect density.3 3

Finally, the relation between the distribution of quadrupole frequency

shifts GQ (d\) (basically an inhomogeneous broadening), and the NMR line shape

G(9) must be established. The quadrupole frequency shift distribution is a gaussian

function with second moment DO ):

For the spin 3/2 case, the magnetic resonance line shape is found

through the expression

where G1/2,3 / 2( A), is the line shape function of the 3/2-1/2 transition caused

by other broadening mechanisms (as modified by the quadrupole shifts). The



first argument in the functional dependence of G1/2,3/2 is the center frequency

for the 1/2-3/2 transition,and the second is intended to represent the effect the

shift may cause on the line shape. The shape due to other interactions can be

modified by the shifts, e.g. terms in the dipolar hamiltonian that are secular in

the absence of shifts will become non-secular when the shifts are large enough, thus

modifying the width of the dipolar broadened line. G-1/2 ,1 /2 and G_ 3 / 2 ,-1_/2 are the

corresponding shape functions for those transitions. The factors 0.3, 0.4, and 0.3

are weighting factors that arise from the transition matrix elements for the three

transitions.

For the case of low defect concentrations treated here, we ignore the

effect of the frequency shift upon the line shape. Further we assume that

G/2,3/2 (V = G-1/2,1/2(N, O) = G_3/2,-1/2( N ) = G O() where G0 ( ) is the

lineshape in the absence of the quadrupole interaction. Then Eq. (A9), in view

of these approximations, becomes

00

G() = 0. Go )o GJGI? ( a  (AlO)

If G0(\>) is a gaussian with second moment (Ad'o then

± 0. 0a -(CIO exp tv)<4< Av2.>], 6 (l)

where S is centered at the Larmor frequency. Thus the second moment <(49) of

the composite line is

/AGO 2 (0d(+0 [,, I g (Al2)



The Fourier transform of G( ) is the FID function. Thus the quadru-

polar broadened FID should have the form of Eq. (19) with 11/12 = 2/3 and

6 z = (Z +47NA
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33. For comparison, we can examine Sundfors's theoretical model. He sets

- e; = ,@) and then computes (<6 from Eq. (A3) by setting r equal to

one-half the average distance between impurities, r=1/2(3/h4TpX)/3,

and averaging over . This yields:

Using his experimental values of (A< he calculated values of R14 that

differ from other experimental values obtained by more direct meansl1 by a

factor of three. While Sundfors's expression for (dvQ has the correct

angular dependence, it will not produce the correct numerical results.


